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Worlds Collide

DO-178

Agile

= Type safety

Bl Modern (e.g. OO, subtypes, |
| task types, mutual exclusion)

[ Targeted towards embedded |
| real-time systems

md Run-time checking
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Just to be clear ...

These

velopmént

aspects are

independent .
dqm %I

synergistic
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Advantages of (good) modeling

Understandability
Reasoning

Architecture
Verifiabilit
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UML Maturity Model Index (UMMI)

Benefit Technologies

0 Manually writing code Editor, compiler
Code Based
Development

1 Visualizing code Reverse engineering
structures

Visualization
2 Class and block Class and block diagrams

modeling of structure

Structural

Modeling
3 State and algorithmic State, sequence and activity

modeling diagrams

O
c
D
<
Ro
©

Behavioral
Modeling
4 Model-based Model execution, code
verification generation, model-based
debugging

Executing

5 Agile and Engineering Model-based testing,
Best Practices nanocycle execution, test
driven development,
continuous integration

Optimizing
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Model Execution
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Model Execution supports Model-Based Verification

= Requirements Models
» Requirements specify a systems input-output control and data transformations

.,
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Model Execution supports Model-Based Verification

= Design Models
» Design specifies the (internal) structural elements and their behavior for implementation
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Code Generation from Design Models
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procedure Anim Active Serialize States (

Anim State :
begin
RhpAnim.Add State(Anim State, Anim Sta
Anim Active Mode Serialize States(th
Anim Active Running Serialize_States
Anim Active Service Serialize States
end Anim Active_ Serialize_ States:
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procedure Anim Active Mode Serialize Sta
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Specifications & Models handed off to software from SE

= Any system specification or design model handed off to software should contain
» Requirements from which model was developed
» Model configuration items (CIs) (files or data representing the model)
» Modeling standards describing the modeling techniques
» Model element libraries
» Model and system interfaces description
» Configuration index of model Cls
» Modeling development environment and user’'s manuals

» Any data from V&V activities performed as system level the may be used to satisfy
verification objectives
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Model-Based Hand-off to Downstream Engineering

o— o

Gather Subsystern Specification
Data

!
e

Review Handoff Specification Data

}
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—=

D. Create New Subsysterm Model

o
Create Shared Model
o
Import Systerm Engineering
Specification
=3
| Lo

Define Subsystern Physical

Interfaces Define Interdisciplinary

Interfaces

Ca Co
~ Allocate Requiremens to
Estahlish Handoff Baseline Engineering Disciplines

E ish Subsystem
o

Review Physical Interfaces

for all subsystems

Task: Allocate Requiremens to Engineering Disciplines

[ This task takes the requirements allocated to a subsystem as a whole and allocates them to the different engineering disciplines
inolved (e.g. software, electronics, mechanical, optical, hydraulic).

Expand All Sections B Collapse All Sections
=/ Purpose

The purpose is to clearly delinate the required contributions of different engineering disciplines to the engineering development of a subsystem by
allocating the requirements allocated to the subsystem by the system engineering team.

W Back to top

B rl 1ati hi
Roles Primary Performer: Additional Performers:
» Control Engineer * Architect
+ Developer « Reliability Czar
+ Electrical Engineer o Safety Czar
+ Mechanical Engineer
+ Miscellaneous Engineer
Inputs Mandatory: Optionat:
+ Requirements Traceability o Failure Modes and Effect Analysis
* Subsystem Model « Fault-Tree Analysis
+ Systems Requirements Specification e Hazard Analysis
Qutputs + Requirements Traceability

+ Subsystem Requirements Specification

Process Usage o handoff_cp > Allocate Requi 1s to Engineering Disciplines

S

% Back to top

[=I Main Description

A subsystem team is usually comprised of engineers within different disciplines. such as software, digital electronics, analog electronics, hydraulic,
pneumatic, control, and mechanical. Once the subsystem specification is handed off, certain of the requirements will belong to one discipline or the
other. Other requirements will require decomposition into derived requirements, allocating portions of a subsystem-level requirement to different
discipline. This is particularly true of quality-of senvice requirements.

% Back to top
I=I Steps

[# Expand All Steps =] Collapse All Steps
[# Review subsystem requirements
& Allocate single-discipline requirements
[+ Decompose multi-discipline requirements
Al derived requi
# Update traceability record
# Review allocations

% Back to top
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Agile for Embedded Real-Time Systems

= Embedded is different than IT
» More constrained _
» Often safety-critical Ag”e
» HW/SW co-design
» Handed off to manufacturing not end users
» More difficult to test
» Far more difficult to update in the field

= Harmony process applied agile methods to embedded REAL-IIME AGILITY
» Iteration-centric model-based development
» Includes practices for
= Test Driven Development
= High-fidelity modeling
= Continuous integration
= Dynamic planning
= Quality assurance
= Continuous safety/reliability/security assessment
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~

Method Composer
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Harmony Agile Overview
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Incremental Development with Harmony
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Incremental Use Case
Analysis
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Model-Based TDD in Action
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DO-331 Model Based Design Supplement to DO-178C
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DO-331

Table MB.C-] Software Planning Process
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Model Based Development and Verification

= Examples of some current industry practices using Model Based Development

Table MB.1-1 Model Usage Examples

Proce:: that MB Example 1 MB Example 1 MEB Example 3 | MB Example 4 | AB Example 5
generates the (S Motz 1) (See Note 13
life-cyele data

System Fegquirements
Eequirement Fegurements Fequirements Fegquirements Eequirements from which the
and System allocated to from which the from which the from which the Model 1=
Design softerare Model 15 Model 1z Model 1= developed
Processes developad developed davelopad
Design Model
Software Fegurements
Requirement from whach the Specificanion Specification Design Mode!
and Software Model 1s Modal MModel
Dezign developed (SeaNor 1)
Processes Design Model Dezign Model Textual
descriphon
(Sea Mote 3)
Software Source Code Souwrce Code Source Code Souree Code Source Code
Coding
Process
Source: RTCA D0-331
’
Bruce’s

recommendation
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Model Based Development and Verification

Model Simulation

= For Specification Models or Design Models, simulation may be used in
combination with reviews and analysis of requirements and architecture to satisfy
some objectives of sections MB.6.3.1, MB.6.3.2, and MB.6.3.3.

= Goal is to provide repeatable evidence that the model complies with its
requirements

= Cannot help meet objectives of compatibility with target computer, traceability,
conformance to standards, or partitioning integrity.

= Can help satisfy:

Objeciives (Compliance (o) I

System Requirements for Specification Models MB.6.3.1.a

SW HLR for Design Models MB.6.3.2.a, MB.6.3.2.a
HLR/LLR Accuracy and consistency MB.6.3.1.b, MB.6.3.2.b
HLR/LLR Verifiability MB.6.3.1.d and MB.6.3.2.d
Algorithm aspects MB.6.3.1.g, MB.6.3.2.g

Consistency & Verifiability of SW Architecture (may provide) MB.6.3.3.b, MB.6.3.3.d
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DO-331 Specification Models

= Contain high-level requirements (HLR)

= Contains no* - e
cases for Navigation = .
» Low-level requirements O B i e
» Detailed data flow H—‘ Mﬁjm ) /!
2 T_ypical!y supported by multiple ‘ ’ \
viewpoints e P F@m o
» Use case diagram Ejlsgwtm - e
» Sequence diagram 7T\ m"g”" Y "
» Activity diagram t ‘ —\
» State machine * e ormmreroten ¥,
» Links to text-based requirements ”’/ Wil i \—
» Simulation / execution data ‘ w
= May not be used to generate code fs=s” H .

*(except to justify design constraints in HLR)
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DO-331 Design Models

= May contain
» Design
» Low-Level Requirements (LLRS)
» Architecture
» Data structures
» Detailed data flow
» Detailed control flow
= Typically supported with multiple
viewpoints
» Class / Object / structure diagrams
» Sequence diagrams
» Activity diagrams
» State diagrams
» Source code

» Verification data

LinearMotionSenso
£ RFDriver
O_ . = getaccelglong - -
Mission: Show 1 é- R gsetr.eqclowaouble.center,couMe,mgh,uouole;u,,,
collaboration elerments £ 3 L getFrame(xGPSFrame_T
X ForwardlMS| 1 1| SidelMS 1| upLMS
for navigation
determination L
- : b
1 Gyroscope o n
rollGyr e
i & = spin:long
1 = satEmpehmeris:char®
pitchGyro 3 p—
: 2
Attitude = enable(onOff:boolyv... 1 S roLoddybool
= roll:long YanGYro” | setspin(sp:langyvoid 1
= pitch:long
= yawslong 1 GPS_Receiver
GPS_Correlator 2 = }
= nSatellites:unsigned short N SatelliteData
9:6PSMsg_T .
=l computeVelocityQ-void o | atib:iong
Position = updateTimeQivoid =1 o enable(onOftboalyvoid  signalStiength:long
Hongtide: o1 o gethircnafiDatag:AireraftData = satsTracked(runsigned short 0.5 = chipRangesint .
longitidailang = enable(onOftboolvoid = acoeptFrametframe: 6PSFrame_T)v...  freqLoddtatus:int
= Iatitude:long e =] GPSMsgOvoid = phaseLockStatusiint
= alti P evEnableg process! tsgQy:voi -
= altitude:long Pos uredo 1 — validEphemerisD ata:bool = dopplerfFreq:double
\ SatAcqui 1 - validaityOfRange:int
B oxtalicnuindy Yl satTime:long
3 7 L = status-long
1 lamanc
e } HiResClock = GPSTime:long
Positionalvelocity AircraftData = health:long i Decryptor
" " at
= dLongitudel... = aispeed:unsigned long =T = clockC alibrationD ata:char
= dLatitude:I 1 3 setTimeeTimen coarseEmpherisichar
S dAltitude:long UTIMICTINAD...
1 Aot = deoryp _TX...
¥ 1| atitudesint
g dRoll:long 1_? IINSDalats’ 1 (KGRSOt g getaltitudeqrvoid
dPitch:long le:int,
1 f1 )1
dYawint G
1 = cunmentTime:TimeDate
KinematicModel
= computeFlightP ath(:void 1
Flightplan . oy N
= plannedStart:TimeD... o selEngineSpeed(sp:long)void o esatt Attt “
= plannedEnd:TimeDate = updateP osition(ad:AircraftDatayvoid o updateAirf rameData(ad:AircratDatayvoid
e — = spootDetectedOrvoid
J 1 1 AirspeedSensor
A ;
it ypm\T/ * C| dlong
it EngineController HydraulicController

Position

= Iatityde:long
= altitude:long

5 enable(enOgfi:bool)woid a

o getirspeedunsigned long

= setSpeed(sp:long)void




| IBM Software Group | Rational software

SW Modeling Standards

= DO-178 generally requires project standards and checklists for crucial work
products

» Standards lay out the (meta)requirements and organizational principles for work products

» Checklists are used by SQA personnel to review the syntax, format, scope and
completeness of the work product (semantics are dealt with by other reviewer roles and by

verification) ‘,
= SW Modeling standards specify e
» Modeling techniques ““::m"“f
» Methods for modeling gﬂ:m;
» Modeling languages (e.g. UML) incl. — o

and Rhapsody

= reference to language standard,

= style and complexity guidelines,

= constraints, —
= means to trace to requirements,

= means to identify any non-normative elements,

= rational for the suitability of the technique for the information
to be expressed
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Harmony: Specification Models

= |ldentify use cases
» Traceability links to requirements
» Typically 8-20 pages of requirements

= Incrementally refine use case definition

» Define the operational scenarios and operational
contracts with sequence diagrams

» ldentify flow with activity diagrams

» Specify normative semantics with state diagram
» Verify with simulation / execution

» Validate with customer at stable points

» Repeat until all requirements represented

e —

Do sunny-day

scenarios first, then

rainy day
E—

L&

Define Use-Case

System Context

L

Define Use-Case
Scenarios

Ca

Derive Use-Case
Functional Flow

Define Ports
and Interfaces

Next Use Case
Lo

Derive Use-Case

[*

B

Requirements Remaining to be Analyzed

_

=%

Verify and Validate

State

—%

Perform UC Review

Black-box use-case analysis complete
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Harmony: Design Models

= Development proceeds incrementally with the
basic premise of “make small incremental
additions, verify, repeat”

= High Fidelity Modeling
» ldentify the software elements required for functional
correctness
» Produce a functionally correct code base that is
verified at unit- and integration - levels
= Design optimizes at three levels of abstraction

» Architectural — optimize the overall system with 5
key views

= Subsystem and Component View
= Safety and Reliability View
= Distribution View
= Concurrency and Resource View
= Deployment View
» Collaboration — use-case level scope
» Detailed — individual software element scope

Nanocycle:
Each loop is

typically 20 - 60

minutes in
duration

& Co

identify software elements  Develop test cases

—%

Refine Co::borstioa
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Translate

[defect]

=Y

[more requirements]

—_—

Iake Cnange Set
Available

[stuble and usable]

Verify Collaboration

<> [no defect] :;

@ «—lall requirements implemented]
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Wrapping up: State of the Art

Now supported with
explicit guidance on the
use of modeling, OO, and

formal methods

Best way to specify and
design complex
embedded systems

DO-178

Agile

Improves quality by

avoiding defects via

continuous execution
and integration

Great language for
developing high-
reliability software for
embedded systems




