| IBM Software Group

Model-Based Ada Development for
DO-178C Projects and Agile
Methods -

Bruce Powel Douglass, Ph.D.
Chief Evangelist

Global Technology Ambassador |
IBM Rational 4
Bruce.Douglass@us.ibm.com \
Twitter: @BruceDouglass

Yahoo: tech.groups.yahoo.com/qgroup/RT-UML/
IBM: ibm.co/brucedouglass

GEVDEIN software © 2013 IBM Corporation

‘ IBM Software Group | Rational software

Worlds Collide

— UML/SysML

DO-178

Model-level)
debug, and t ‘

Agile

‘ IBM Software Group | Rational software

Worlds Collide

‘ IBM Software Group | Rational software

Worlds Collide

DO-178

Agile

= Type safety

Bl Modern (e.g. OO, subtypes, |
| task types, mutual exclusion)

[Targeted towards embedded |
| real-time systems

md Run-time checking

‘ IBM Software Group | Rational software

Worlds Collide

Continuous

Continuous

Iterative de

Dynamic pl

I

Self organi

| IBM Software Group | Rational software

Just to be clear ...

These

velopmént

aspects are

independent .
dqm %I

synergistic

‘ IBM Software Group | Rational software

Advantages of (good) modeling

Understandability
Reasoning

Architecture
Verifiabilit

‘ IBM Software Group | Rational software

UML Maturity Model Index (UMMI)

Benefit Technologies

0 Manually writing code Editor, compiler
Code Based
Development

1 Visualizing code Reverse engineering
structures

Visualization
2 Class and block Class and block diagrams

modeling of structure

Structural

Modeling
3 State and algorithmic State, sequence and activity

modeling diagrams

O
c
D
<
Ro
©

Behavioral
Modeling
4 Model-based Model execution, code
verification generation, model-based
debugging

Executing

5 Agile and Engineering Model-based testing,
Best Practices nanocycle execution, test
driven development,
continuous integration

Optimizing

| IBM Software Group | Rational software

Model Execution

?7 File Edit View Code Layout Tools _Vﬁindow Help
[TSEH+smBL&i ¢ 2AEX|(|RQLEOER™ | & ||E@LUiCO0%WPES 2%
PlO®> Fwemimed? | ImopBnRakE e < |
I e — Hx|
ll 3 statechart of : FCM_Turns_uc - FCMBuilder_Turn.itsFCM_Tumns_ucF... [o || & | &8 | | [0 Sequence Diagram: Animated Animated FCM Turn Template 0 * [af@]= -!%a
: = | | :FcMBuilde... FCMBuilde... FCMBuilde..|FCMBuilde.. FCMBuilde.. FCMBuilde.. [FCMBuilde... FCMBuild. | é‘
| | | | [| ‘=
|
mEEC_OREEN_ M o “,T‘T
| VT_PORT(E V20 BNie = 2d|
‘ N
N
€|
| ! |
R

TGREEN_TH

= Ty
U T_POATIoE />0 Enve VYol

< —— - . - — — 3

W5 ClUsers\Broce DouglasVAppData\Roaming\Microsofiintemat Explorenu. Ll (=TI

et ped lane id 8
i ondary Through

y Through
} Turn

y Through

i | |
		[
		[
	1 [
		[
		[
		[
		[
{		[
		[

| | | | [|

i | | | t |
		{
		[
		[
		L
x		{
		[
		[
		[
		[
	1 [
		{

ondary Turn

pugh=don’t walk
hrough=don’t walk

1

gh=Rec
wry Turn=Red
wdary Throuc '

Tue, 12, Feb 2013 1:07 PM

‘ IBM Software Group | Rational software

Model Execution supports Model-Based Verification

= Requirements Models
» Requirements specify a systems input-output control and data transformations

.,
Payload Operator

Manage
Datalink
1

«in|

E

iOpticalSenices

P

kP evBITMsg()
£ evPostFailed(status:int)

£ evStatusMsg(status:int)
£ evTargetsFound|tList TargetListType)
&P ewideoFrame(vFrame:VideoFrameTy. ..

o

iOpticalResults

requirement_6

The video camera shall provide
a position range of 80 degrees
fore and aft and 80 degrees port

requirement_7 and starboaed

The video camera shall position

itself to (0,0) upon initialization =
(i.e. straight downward) T
T
—_
«Reguirements T
requirement_23
C——

The video reconassiance -
camer sghall zero its «Reguirements

position prior to its use requirement_24

Camera shall limit its position to 80
dearees off normal

requirement_4

R =
The video camera shall provide a
maximuim slew rate of 10 degrees
per second.

requir

The video camera sH
positioning accuracy

[enabled
. | k!
E:VD"““’ - evincrementalMove/
videoCameraAutoPosition(); | A , params->y);
videoCameraShutDown(); tm(BIT_TIME) | Moving P
builtinTest(); evMove/
: Sy OUT_PORT(pPayloadOp}->GEN(evB! | | moveTo(params->x, params->y);
Disabled ! (bitStatus)] TMsg(bitStatus) |
|
'y 7y evEnableCamera | Idie
3 — |
SelfTesting @) | —_—
& POST(: I evSetZoom/
_____________ B v setZoom{params->z);
tm(FrameRate)/ 3 Zooming
OUT_PORT(pPayloadOp}-> \
GEN(ewideoFrame{vFrame)) ‘
felse}) —— & | 1 ¥ @ e
OUT_PORT(pPayloadOp]
gGEN(evPostFanled{posl tmitrackUpdateTime)/
tatus)), [postStatus == PASS}/ updateNavigation(); updateAttituds();
videoCameralnitialization(); calculateCameraXY():
GEN({evincrementalMove(x.y);
= I"; [isValidTarget(params->targetiD)}/ [else}/
Initializing addTargetID(params->targetiD); OUT_PORT{pPayloadOp)->
Tracking | CENevStatusMsg(INVALID_TARGET_ID).
evTrackTarget R
[elsel/ evRemoveTarget "
[else OUT_PORT(pPayloadOp)->

OUT_PORT(pPayloadOp]
->GEN(evStatusMsg(INITIALIZATION_FAILED)]

[intializationStatus == PASS)/

GENevStatusMsg(NVALID_TARGET_ID);

/ removeTarget(params->targefiD);

OUT_PORT(pPayloadOp)->GEN(evS

TIAILIZATION_SUCCESS)

Scanning evNoTrack frumOffargeta (4]
[
[isValidTarget(paramsi(targetiD)}/
Msg(INI i addTargetiD(params->targetiD);
evIrackTarget
L. %,

NotTracking

OUT_PORT(pPayloadOp)->

/OUT_PORT(pPayloadOg)->GEN(evTarg
etsFound(targetList)

evidTarget/
scan(params->scanRegion, params->targetList);

GENevStatusMsg(INVALID_TARGET_ID);

[else]

A

| IBM Software Group | Rational software

Model Execution supports Model-Based Verification

= Design Models
» Design specifies the (internal) structural elements and their behavior for implementation

ENV ! |
= «Web Manag g= Receives events from) - -
H «Web Manad 2 CharacterParser as to the character eWVhiteSpace/ EF ParsingNumber
H «Web Manad 2 evReset | | and its type. This object constructs |tsEvaluatur—>GEN(e\.Numher(valu & S
< i
E-evCont() 2 EvaluatorsM
- WRONGTOKEN evEOS
ipevFree() 7 evNumber evhumberq ™ eviloiop ELEa DAL
EF-eviormal() F
f pushi{params-=value}; ~ P iNOEX .
Epevstep() é reduce Unary(; ars]mg pression
J é i evRightParen/ i ParsingTerm
CharPars g [exprS evLeftParen/ re duce SubExpr); ey
A = ushiparams-=0 evLenraren
H «Web Manags 7 pos: 0 puship Bl evAddOp/] evﬁddt}pf el g
= < len=ex] ﬂ ushUnary(params-=op) Comtimbar reduce (i;
| «Web Managg % pushiparam #0“ GotaddOp eviMumben
| H «web Managd ;" | Idle push(params-=value}
= «\Web Managg g ‘ > re duce Unary();
Web Managd ~ MRS
B« g Z I reduce () N — eviiutop/ A evRightPareni
j dis playRes ult; b - pushiparams-=op} evAGAORH reduce SUbExpr(y
f‘_ evE|DS Sy . ?eudsuc(gsgaar?ys(o pushUnary(params-=op}
- h 4
£ beginWhiteSp; 2 Ielgar; evhutOp reduceFACrll oy addop) EGTNTbE |
EpevGetNexichal 7. R SRmulaters G T pushUnary(params->ap okt |
EFevGo() % Ex = z £0s k4 I duhoe 0 5
EpevResel() g | pressionError % ev ParsingFactar push({params-=op)
: i O
B evininiiz Space 2+ ‘ . DivideByZero - BVEDS
& print(s:chary: f evMultOpi reduce();
i - - 7 & U pushi{params-=op) displayRes ult()
& print(c:char):vi < s
: o s Stimulato -=GEN{e§ Cont);
O setExpression “ evLefiParen/ ¥
; WRONGTOKEN push(params-=op},
- eviMukOp
“ —— evBadFaren
7 EARLY_EOS &
-
2 WRONGTOKEN
E——
Z
7 | T T T

‘ IBM Software Group | Rational software

Code Generation from Design Models

r
@ IBM Rational Rhapsody Developer for Ada - Dishwasher.adb

(=] & i)

File Edit View Code
cEEtmas@i| ¢ sumx ||[CeaemM& & |[@EOr0bLPfE233 |

Tools Window Help

Hml m & JIf $ DefautComponent v | Animated_Panel v]l

[B] Tk at i | T I |[eTome []z B E = Pope Bay| e

B, Object Model Diagram: model in defau... E] @ Dishwasher.ads E’ 2
Entire Model Vi¢ i 472 — 0a3s
Front_Panel 473 type OMAnim Dishwasher Set Rinse Time t is 0439
474 record 0440
475 baseCper: RhpAnim.ARCCperation: 0441
476 value : Integer; 0442
477 end record:; 0443
Real_Time 478 0444
E text_io ¥ 479 Type OMAnim Dishwasher Set Rinse Time vtbl_t 0445
480 receoxd 0446
481 invoke: system.address ; 0447
i 482 unserializeArguments: system.address; 0448
-2 Attribut Dishwasher 3 483 end record; 0449
E-(2s Depenc 484 0450
" aUs 485 procedure Dishwasher_Set_Rinse Time Unserial 0451
-3 Operati 486 me: in out OMAnim Dishwasher Set Rinse Tim 0452
487 argValues: System.Address; 0453
I 488 Position : System.Address); 0454
e [=] 5 489 Pragma Export(C, Entity => Dishwasher_ Set Ri 0455
- 490 External Name=>"Dishwasher Set_Rinse Time 0456

5 491

oé’ Soiggiin By cdis @@ 492 function Dishwasher Set_ Rinse Time_ invoke (g::;
493 me: OMAnim Dishwasher Set Rinse Time_t; 0459
I 494 thelnstance: System.Address) return System 0460
495 Pragma Exporct(C, Entity => Dishwasher Set_ Ri 0461
496 External Name =>"Dishwasher_ Set Rinse Time 0462
497 0463
Seti 498 CMAnim Dishwasher_ Set_ Rinse_Time: CMAnim Dis 0464
i-(2) Statech 499 0465
- Front_Pan« 500 OMAnim Dishwasher Set Rinse Time_vtbl: CMAni: 0466
b-" Associa 501 (Dishwasher_ Set_Rinse Time_ invoke'address, 0467
&E, Attribul 502 Dishwasher Set_Rinse Time Unserialize Argum _ 0468
(22 Depenc 503 H 0469
[Operati 504 type OMAnim Dishwasher Set Wash Time tT is | 0470
Events 505 record 0471
Object Model | 506 baseOper: RhpAnim.ARCOperation; 0472
225 model 507 value : Integer; 0473
Sequence Diag 508 end record; 0474
redefinedTypes (509 0475
redefinedTypesA q 510 Type OMAnim Dishwasher_ Set Wash Time vtbl t 0476
| Diagrams IE P ¥ » 0477

|For Help, press F1
L

-
procedure Anim Active Serialize States (

Anim State :
begin
RhpAnim.Add State(Anim State, Anim Sta
Anim Active Mode Serialize States(th
Anim Active Running Serialize_States
Anim Active Service Serialize States
end Anim Active_ Serialize_ States:

RhpAnim.State_Acc T) is

procedure Anim Active Mode Serialize Sta
Anim State : RhpAnim.State_Acc_T) is
begin
RhpAnim.Add_State (Anim Sctate, Anim Sta
case this.Active_Mode_ sub_state is
when Active Mode_ Intense =>
Anim Active_Mode_Intense_Serialize
when Active Mode Quick =>
Anim Active_Mode Quick Serialize S
when others =>
null;
end case;
end Anim Active_Mode_Serialize_States;

procedure Anim Active Mode_ Intense_Seria
Anim State : RhpAnim.State_Acc_T) is
begin
RhpAnim.Add State(Anim State, Anim Sta
end Anim Active Mode Intense Serialize S

procedure Anim Active Mode Quick Seriali
Anim State : RhpAnim.State_Acc_T) is
begin
RhpAnim.Add State(Anim State, Anim Sta
end Anim Active Mode Quick Serialize Sta

procedure Anim Active Running Serialize
Anim State : RhpAnim.State_Acc_T) is
begin
RhpAnim.Add State(Anim State, Anim Sta
case this.Active Running sub state is ~
»

Fri,7,Jun 2013 1:44 PM

. IBM Software Group | Rational software

Specifications & Models handed off to software from SE

= Any system specification or design model handed off to software should contain
» Requirements from which model was developed
» Model configuration items (CIs) (files or data representing the model)
» Modeling standards describing the modeling techniques
» Model element libraries
» Model and system interfaces description
» Configuration index of model Cls
» Modeling development environment and user’'s manuals

» Any data from V&V activities performed as system level the may be used to satisfy
verification objectives

‘ IBM Software Group | Rational software

Model-Based Hand-off to Downstream Engineering

o— o

Gather Subsystern Specification
Data

!
e

Review Handoff Specification Data

}

=Y

—=

D. Create New Subsysterm Model

o
Create Shared Model
o
Import Systerm Engineering
Specification
=3
| Lo

Define Subsystern Physical

Interfaces Define Interdisciplinary

Interfaces

Ca Co
~ Allocate Requiremens to
Estahlish Handoff Baseline Engineering Disciplines

E ish Subsystem
o

Review Physical Interfaces

for all subsystems

Task: Allocate Requiremens to Engineering Disciplines

[This task takes the requirements allocated to a subsystem as a whole and allocates them to the different engineering disciplines
inolved (e.g. software, electronics, mechanical, optical, hydraulic).

Expand All Sections B Collapse All Sections
=/ Purpose

The purpose is to clearly delinate the required contributions of different engineering disciplines to the engineering development of a subsystem by
allocating the requirements allocated to the subsystem by the system engineering team.

W Back to top

B rl 1ati hi
Roles Primary Performer: Additional Performers:
» Control Engineer * Architect
+ Developer « Reliability Czar
+ Electrical Engineer o Safety Czar
+ Mechanical Engineer
+ Miscellaneous Engineer
Inputs Mandatory: Optionat:
+ Requirements Traceability o Failure Modes and Effect Analysis
* Subsystem Model « Fault-Tree Analysis
+ Systems Requirements Specification e Hazard Analysis
Qutputs + Requirements Traceability

+ Subsystem Requirements Specification

Process Usage o handoff_cp > Allocate Requi 1s to Engineering Disciplines

S

% Back to top

[=I Main Description

A subsystem team is usually comprised of engineers within different disciplines. such as software, digital electronics, analog electronics, hydraulic,
pneumatic, control, and mechanical. Once the subsystem specification is handed off, certain of the requirements will belong to one discipline or the
other. Other requirements will require decomposition into derived requirements, allocating portions of a subsystem-level requirement to different
discipline. This is particularly true of quality-of senvice requirements.

% Back to top
I=I Steps

[# Expand All Steps =] Collapse All Steps
[# Review subsystem requirements
& Allocate single-discipline requirements
[+ Decompose multi-discipline requirements
Al derived requi
Update traceability record
Review allocations

% Back to top

| IBM Software Group | Rational software

Agile for Embedded Real-Time Systems

= Embedded is different than IT
» More constrained _
» Often safety-critical Ag”e
» HW/SW co-design
» Handed off to manufacturing not end users
» More difficult to test
» Far more difficult to update in the field

= Harmony process applied agile methods to embedded REAL-IIME AGILITY
» Iteration-centric model-based development
» Includes practices for
= Test Driven Development
= High-fidelity modeling
= Continuous integration
= Dynamic planning
= Quality assurance
= Continuous safety/reliability/security assessment

‘ IBM Software Group | Rational software

~

Method Composer

Search this Site: |

L% & o
~ Agile for ESW &2
Welcome to Harmony/Agile for Embedded Software Development
elcome to Harmony/Agile for Embedded . < -
. Misslete il Lo Welcome to Harmony/Agile for Embedded Software Development cCo BB &
& Getting Started)
[=] # Delivery Processes
B8 Harmony/Agile for Embedded Software
Development [~ Main Description
% Handoff for Downstream
@g:g:‘ee::ggoe ploy:the Development — Agile for Embedded Software Development Ml::Itll:lg
and ot from
Environment Systems
2 Develop Initial Requirements Engineering Architecting

[+ €& Development Iteration
% Configuration Management
& &3 Control Project

Z%Manage Change

B2 QA Audit :

2 Pre-lteration Planning Iteration Preparing
(Month) for V&V

[=] “& Development Iteration
3 Use Case / User Story Analysis
E2Plan Iteration
3 High-Fidelity Modeling
&7 Architectural Design - RT
1+ £ Collaboration Design - RT
¥ Detailed Design - RT

Potentially Shippable
Product Increment

Iteration
Workfiow

{0 |

Iteration
Retrospective

=
o
o
=3
o
=

O¢ OF

2 Continuous Integration :
B3 Prepare for Verification and Customer Liaison Practices
Validation
% Verification and Validation = -
® %Guidanae Project Management Practices
£ Supporting Workflows , _
Quality Assurance Practices

[+ CPESW Agile Practices
) Tools
Safety, Reliability & Security Practices

‘ IBM Software Group | Rational software

Harmony Agile Overview

[systems engineering precedes] Br:j
. 2 < > 5 LS5
| niti al Handoff for Downstream
[no systems engheem% Engineering

Planning) . Integration with
(schedule,) System Engineering
reuse, risk,

safety
analysis) =5 55 =5
Pre-tteration Planning Define and Deploy the Develop Initial Reguirements
Development Environment [mission g¢ritical project]
L '

Q%%l ion

anagement

Continuous All activities may

5] = 5] be audited

Control Project Development Manage Change
lteration

Safety
Assessmen

Primary development

‘ IBM Software Group | Rational software

Incremental Development with Harmony

S

Plan Rteration Use Case / User
Story Analysis

High-Fidelty Modeling
@ W
Architectural Design - RT @
& Continuous

@ Integration
SRR
bﬁ Prepare for

Collaboration Design - RT Verification and
Validation

s

Detailed Design - RT

5

Verification and Validation

5

Perform
Retrospective

This Development lteration
("Microcycle™) is normally 4-6 weeks
in duration, resutting in a verified and

validated bu Daily
compliance ' ;
teration. Meeting
Architecting
Iteration
Requirements

Iteration
: :
s (Month) el

Iteration

Release
Backlog
== | Ppotentially Shippable
B Iteration L Product Increment
= Workflow
(I | — Iteration
Backlog Retrospective

‘ IBM Software Group | Rational software

Incremental Use Case
Analysis

b 4

B

Define Use-Case System Context

Nanocycle: Development of use
cases should perform this cycle

Q’ Qo in iterations of 30-60 minutes,

incrementally modeling and

Derive Use-Case Derive Use-Case verifying the requirements.

Scenarios Functional Flow

N

Co ; Co

Define Ports and I § Update and Maintain
Interfaces o Reguirements
Derive Use-Case
State Behavior

B

Verify and Validate
Functional Requirements

[use case incomplete] g

B

[use case done] l Add Traceabilty Links

Lo

Perform Review

[more use cases] [done]

‘ IBM Software Group | Rational software

&3 Nanocycle:
S Each loop is
typically 20 - 60
minutes in
duration

F; S, 8

1
I
1
1
th
I
1
1
1

ey

Develop test cases

High-fidelity <
MOdeling Identify software elemen

[more requirements]

ntinuous
Integration

r
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

I
1
P I :
1! | I
I I I
La - I =, ‘ I
Refine Collaboration ! I © > I
I : : Make Change Set 1
L-_éb : , | Available :
! [defect] 1 I
Translate o | [stable and usable] |
1
__________________ | | 1
1 A\ I[nd defect] 1
Lo = OO .
Verify Collaboration ! _ A 4 ; !
, Test-driven ! =--m-m-mmmmmmmm - = —
! Development

R 1B/ R | Datianal Dhancadu Navalanar fnr ' =

=™l R IEM Rational Rhapsody Develop

‘ IBM Software Group | Rational software

Model-Based TDD in Action

HJ Object: @
Event: m
En Arguments:
i Name
C
Obi VLT
o M
VLT Veh
=] D& E F
N
ents || |
jectM E\
Fcm|| =8
VL By
GREE|
E itsVehicl
finedT
® Blgnegrd (L
= {}s l
ey
=@ | We
®® ﬁa
® \ Events Bev
= (£ Object v Bse
g8 FCM
ad LB
=2-$ Types
& GREEN
< RED
& YELLOW
A R

F

Ready |
File Edit View Code Layout Tools *—» |
vaoI
::25:]‘ *—b Ready | ;‘;?fgixicleLfgth’ThruéGEN(evRed).
| | itsVehicleLightSThru->GEN(evRed).
\ FCMCTester i)
Eew itsFixedCycleModeController | 1
Wevt FixedCycleModeController @
You should never be more ~20 m'”l
than a few minutes away from DANOCYCle
. evGo()
we demonstrating that what you aevSecondaryDone()
fo have so far is correct Sy svErenaeyDons() B
eCoftroller | 1
for fixed cycle mode use case tsVSPTum | 1
VehicleSensor S A
= laneNumint itsVSSTurn
- 1
W evCarArrive() itsPTurnSensor
W evReset()

3PV

‘ IBM Software Group | Rational software

DO-331 Model Based Design Supplement to DO-178C

. I RTCA, Inc.
1150 th Swreet. NW. Suite 910 1150 15t Stroet, NW, Suite 910
Washingion, D.C. 20036 Washingion, DC 20036
RTCA, Inc.
1150 18" Street, NW, Suite 910 ==
Washington, DC 20036-3816 USA
Software Tool Qualification Considerations Object-Oriented Technology and Related
Techniques
Supplement to DO-178C and DO-278A
Software Considerations in Airborne Systems
ucamter 1. 2011 ERICA and Equipment Certification meaposs P by 203
RTCA, Inc
llmdﬁm,;;f;;:ﬁlﬂ RTCA, Inc.
e 1150 1th Stroct, NW, Site 910
‘Washingion, D.C. 20036
Formal Methods Supplement to DO-178C and
Madel-Based Development and Verification DO-278A
7
Supplement to DO-178C and DO-278A RTCA DO-178C Prepared by: SC-205
December 13, 2011 ©2011 RTCA, Inc.

RTCADO33 Prepared by: $C-2
December 13, 2011 ©2011 RTCA, Inc RTCA DO-333 Propared by: SC-205

December 13,2011 © 2011 RTCA, Inc.

‘ IBM Software Group | Rational software

DO-331 Model Based Design Supplement to DO-178C

. I RTCA, Inc.
1150 th Swreet. NW. Suite 910 1150 15t Stroet, NW, Suite 910
Washingion, D.C. 20036 Washingion, DC 20036
RTCA, Inc.
1150 18" Street, NW, Suite 910 ==
Washington, DC 20036-3816 USA
Software Tool Qualification Considerations Object-Oriented Technology and Related
Techniques
Supplement to DO-178C and DO-278A
Software Considerations in Airborne Systems
ucamter 1. 2011 ERICA and Equipment Certification meaposs P by 203
RTCA, Inc
llmdﬁm,;;f;;:ﬁlﬂ RTCA, Inc.
e 1150 1th Stroct, NW, Site 910
‘Washingion, D.C. 20036
Formal Methods Supplement to DO-178C and
Madel-Based Development and Verification DO-278A
7
Supplement to DO-178C and DO-278A RTCA DO-178C Prepared by: SC-205
December 13, 2011 ©2011 RTCA, Inc.

RTCADO33 Prepared by: $C-2
December 13, 2011 ©2011 RTCA, Inc RTCA DO-333 Propared by: SC-205

December 13,2011 © 2011 RTCA, Inc.

| IBM Software Group | Rational software

DO-331

Table MB.C-] Software Planning Process

= Clarifies the use of modeling in S i e - ey
DO-178 projects oo A IS el el S il i i il
MB 420 PEAMA ME11 [I D i
= 83 objectives total ——— e i o i e e
B e A [EEE el el B e e B RS RN (e [
. . . ':I":-‘;':I" SO Pl MEU |5 D | @
= 12 entirely new objectives el =4 o LELLL
. mmmm I} Pz (URERN A O Gl Dod
= |dentifies e = e 1 1
2 |pocesses, their ME.4.1b :::L (ol 1] Ko 1] WP ME AL KD T i 2
» Specification Models o sowre |umuslo|o oo
. I ESETS 504 Fian [T el e il e
» Design Models o st ot b st
scwars e cyco s 5 e I
» Need for identification of [e [8 hmaaae [P22 PO
normative and non-normative . a4 Pian ar o o] £
PS4 MEAU T D D T |
elements _— maa2t s wz oo fole|e
: . 4 |consierabons an BE4g| wmeaz |2]O]S]0 08w MEUS I D P& |3 |2
» Guidance for use of models in — MEAK] i wiafo ool e
H S0 Flan s DD 2T @
DO-1788 projects oot Wt oo e 2
] e O e R o S e i o
— wuzld o e e
g ey FERRH vl B I O S B) e 2
* w@% peang| TR ololola| [yl ule |2 |o |@

' IBM Software Group | Rational software

Model Based Development and Verification

= Examples of some current industry practices using Model Based Development

Table MB.1-1 Model Usage Examples

Proce:: that MB Example 1 MB Example 1 MEB Example 3 | MB Example 4 | AB Example 5
generates the (S Motz 1) (See Note 13
life-cyele data

System Fegquirements
Eequirement Fegurements Fequirements Fegquirements Eequirements from which the
and System allocated to from which the from which the from which the Model 1=
Design softerare Model 15 Model 1z Model 1= developed
Processes developad developed davelopad
Design Model
Software Fegurements
Requirement from whach the Specificanion Specification Design Mode!
and Software Model 1s Modal MModel
Dezign developed (SeaNor 1)
Processes Design Model Dezign Model Textual
descriphon
(Sea Mote 3)
Software Source Code Souwrce Code Source Code Souree Code Source Code
Coding
Process
Source: RTCA D0-331
’
Bruce’s

recommendation

| IBM Software Group | Rational software

Model Based Development and Verification

Model Simulation

= For Specification Models or Design Models, simulation may be used in
combination with reviews and analysis of requirements and architecture to satisfy
some objectives of sections MB.6.3.1, MB.6.3.2, and MB.6.3.3.

= Goal is to provide repeatable evidence that the model complies with its
requirements

= Cannot help meet objectives of compatibility with target computer, traceability,
conformance to standards, or partitioning integrity.

= Can help satisfy:

Objeciives (Compliance (o) I

System Requirements for Specification Models MB.6.3.1.a

SW HLR for Design Models MB.6.3.2.a, MB.6.3.2.a
HLR/LLR Accuracy and consistency MB.6.3.1.b, MB.6.3.2.b
HLR/LLR Verifiability MB.6.3.1.d and MB.6.3.2.d
Algorithm aspects MB.6.3.1.g, MB.6.3.2.g

Consistency & Verifiability of SW Architecture (may provide) MB.6.3.3.b, MB.6.3.3.d

. IBM Software Group | Rational software

DO-331 Specification Models

= Contain high-level requirements (HLR)

= Contains no* - e
cases for Navigation = .
» Low-level requirements O B i e
» Detailed data flow H—‘ Mﬁjm) /!
2 T_ypical!y supported by multiple ‘ ’ \
viewpoints e P F@m o
» Use case diagram Ejlsgwtm - e
» Sequence diagram 7T\ m"g”" Y "
» Activity diagram t ‘ —\
» State machine * e ormmreroten ¥,
» Links to text-based requirements ”’/ Wil i \—
» Simulation / execution data ‘ w
= May not be used to generate code fs=s” H .

*(except to justify design constraints in HLR)

‘ IBM Software Group | Rational software

DO-331 Design Models

= May contain
» Design
» Low-Level Requirements (LLRS)
» Architecture
» Data structures
» Detailed data flow
» Detailed control flow
= Typically supported with multiple
viewpoints
» Class / Object / structure diagrams
» Sequence diagrams
» Activity diagrams
» State diagrams
» Source code

» Verification data

LinearMotionSenso
£ RFDriver
O_ . = getaccelglong - -
Mission: Show 1 é- R gsetr.eqclowaouble.center,couMe,mgh,uouole;u,,,
collaboration elerments £ 3 L getFrame(xGPSFrame_T
X ForwardlMS| 1 1| SidelMS 1| upLMS
for navigation
determination L
- : b
1 Gyroscope o n
rollGyr e
i & = spin:long
1 = satEmpehmeris:char®
pitchGyro 3 p—
: 2
Attitude = enable(onOff:boolyv... 1 S roLoddybool
= roll:long YanGYro” | setspin(sp:langyvoid 1
= pitch:long
= yawslong 1 GPS_Receiver
GPS_Correlator 2 = }
= nSatellites:unsigned short N SatelliteData
9:6PSMsg_T .
=l computeVelocityQ-void o | atib:iong
Position = updateTimeQivoid =1 o enable(onOftboalyvoid signalStiength:long
Hongtide: o1 o gethircnafiDatag:AireraftData = satsTracked(runsigned short 0.5 = chipRangesint .
longitidailang = enable(onOftboolvoid = acoeptFrametframe: 6PSFrame_T)v... freqLoddtatus:int
= Iatitude:long e =] GPSMsgOvoid = phaseLockStatusiint
= alti P evEnableg process! tsgQy:voi -
= altitude:long Pos uredo 1 — validEphemerisD ata:bool = dopplerfFreq:double
\ SatAcqui 1 - validaityOfRange:int
B oxtalicnuindy Yl satTime:long
3 7 L = status-long
1 lamanc
e } HiResClock = GPSTime:long
Positionalvelocity AircraftData = health:long i Decryptor
" " at
= dLongitudel... = aispeed:unsigned long =T = clockC alibrationD ata:char
= dLatitude:I 1 3 setTimeeTimen coarseEmpherisichar
S dAltitude:long UTIMICTINAD...
1 Aot = deoryp _TX...
¥ 1| atitudesint
g dRoll:long 1_? IINSDalats’ 1 (KGRSOt g getaltitudeqrvoid
dPitch:long le:int,
1 f1)1
dYawint G
1 = cunmentTime:TimeDate
KinematicModel
= computeFlightP ath(:void 1
Flightplan . oy N
= plannedStart:TimeD... o selEngineSpeed(sp:long)void o esatt Attt “
= plannedEnd:TimeDate = updateP osition(ad:AircraftDatayvoid o updateAirf rameData(ad:AircratDatayvoid
e — = spootDetectedOrvoid
J 1 1 AirspeedSensor
A ;
it ypm\T/ * C| dlong
it EngineController HydraulicController

Position

= Iatityde:long
= altitude:long

5 enable(enOgfi:bool)woid a

o getirspeedunsigned long

= setSpeed(sp:long)void

| IBM Software Group | Rational software

SW Modeling Standards

= DO-178 generally requires project standards and checklists for crucial work
products

» Standards lay out the (meta)requirements and organizational principles for work products

» Checklists are used by SQA personnel to review the syntax, format, scope and
completeness of the work product (semantics are dealt with by other reviewer roles and by

verification) ‘,
= SW Modeling standards specify e
» Modeling techniques ““::m"“f
» Methods for modeling gﬂ:m;
» Modeling languages (e.g. UML) incl. — o

and Rhapsody

= reference to language standard,

= style and complexity guidelines,

= constraints, —
= means to trace to requirements,

= means to identify any non-normative elements,

= rational for the suitability of the technique for the information
to be expressed

‘ IBM Software Group | Rational software

Harmony: Specification Models

= |ldentify use cases
» Traceability links to requirements
» Typically 8-20 pages of requirements

= Incrementally refine use case definition

» Define the operational scenarios and operational
contracts with sequence diagrams

» ldentify flow with activity diagrams

» Specify normative semantics with state diagram
» Verify with simulation / execution

» Validate with customer at stable points

» Repeat until all requirements represented

e —

Do sunny-day

scenarios first, then

rainy day
E—

L&

Define Use-Case

System Context

L

Define Use-Case
Scenarios

Ca

Derive Use-Case
Functional Flow

Define Ports
and Interfaces

Next Use Case
Lo

Derive Use-Case

[*

B

Requirements Remaining to be Analyzed

_

=%

Verify and Validate

State

—%

Perform UC Review

Black-box use-case analysis complete

| IBM Software Group | Rational software

Harmony: Design Models

= Development proceeds incrementally with the
basic premise of “make small incremental
additions, verify, repeat”

= High Fidelity Modeling
» ldentify the software elements required for functional
correctness
» Produce a functionally correct code base that is
verified at unit- and integration - levels
= Design optimizes at three levels of abstraction

» Architectural — optimize the overall system with 5
key views

= Subsystem and Component View
= Safety and Reliability View
= Distribution View
= Concurrency and Resource View
= Deployment View
» Collaboration — use-case level scope
» Detailed — individual software element scope

Nanocycle:
Each loop is

typically 20 - 60

minutes in
duration

& Co

identify software elements Develop test cases

—%

Refine Co::borstioa

=Y

Translate

[defect]

=Y

[more requirements]

—_—

Iake Cnange Set
Available

[stuble and usable]

Verify Collaboration

<> [no defect] :;

@ «—lall requirements implemented]

‘ IBM Software Group | Rational software

Wrapping up: State of the Art

Now supported with
explicit guidance on the
use of modeling, OO, and

formal methods

Best way to specify and
design complex
embedded systems

DO-178

Agile

Improves quality by

avoiding defects via

continuous execution
and integration

Great language for
developing high-
reliability software for
embedded systems

