
6/13/2013

1

Research Challenges in
Exploiting Multi‐Core Platforms

f R l Ti A li tifor Real‐Time Applications

Giorgio Buttazzo

Scuola Superiore Sant’Anna, Pisa

Evolution of Embedded Systems

The complexity of embedded systems has grown
exponentially in several application domains:

6/13/2013

2

100

ECUs
in a car

ECU growth in a car

40

60

80

100

1970 1990 2000 2010
0

20

1980 year2020

Engine: ignition, fuel pressure, water temperature,
valve control, gear control,

Software in a car

Dashboard: engine status, message display, alarms

Diagnostic: failure signaling and prediction

Safety: ABS, ESC, EAL, CBC, TCS

Assistance: power steering, navigation, sleep sensors,
parking, cruise control, collision detection

Comfort: fan control, air conditioning, music,
regulations: steer/lights/sits/mirrors/glasses…

6/13/2013

3

Functions in a cell phone

200

functions
in a cell phone

80

120

160

200

0

40

1970 1990 2000 20101980 year2020

Modem

Phone

TV

Agendasms

Cell phone applications

Camera Radio

Calculator
MP3 player

Web browser
Camcorder

MappingGaming

Payment

6/13/2013

4

Observed trends

Software:

increasing functionalitiesincreasing functionalities

Hardware:

multi-core platforms and
heterogeneous systems

Requirements:

high-performance and
real-time

Higher
Processing Multi-core

platforms

New design objectives

Increasing
functions

Parallel
Languagespower platforms

Multiple
applications

Component-based
design & analysis

Languages

High
performance

Real-time
guarantee Temporal

Isolation

app ca o s

Fast HW
evolution

g y

High software
portability

6/13/2013

5

Required support

Automatize allocation of parallel applications

Simplify portability by proper abstraction layers

Optimize resources (processing, memory, energy)

I l t th ti i b h i f diff t li tiIsolate the timing behavior of different applications

Provide offline guarantee for real-time applications

This talk

• Illustrates a general framework to address such
multiple objectives;multiple objectives;

• Presents a number of consolidated methodologies
for handling specific problems;

States a number of open problems for further• States a number of open problems for further
research.

6/13/2013

6

System model

τ1 τ2 τ3

τ6 τ7

τ5

A τ4
B

7

τ8

?

Core 1 Core 2 Core 3 Core 4

τ1 τ2 τ3τ4 τ5 τ6τ7 τ8

Problems

• How to express parallelism?

• How to achieve temporal isolation?

• How to analyze real-time applications?

• How to simplify portability?p y p y

• How to optimize resource usage?

6/13/2013

7

As we are entering the multicore era, sequential
languages (as C/C++) are no longer the most

Exploiting parallelism

languages (as C/C++) are no longer the most
appropriate way to specify programs.

In fact, a sequential language hides the intrinsic
concurrency that must be exploited to improve
the performance of the system.

Speed‐up factor

γ fraction of parallel code
S(P) speed-up factor on P processorsS(P) speed up factor on P processors

)1(−−
=

PP
PS
γ

[Amdahl’s law]

P
P = 100

1
γ

0

1

γ = 0.5
S = 2

6/13/2013

8

Parallelism can be expressed by using a suitable
dataflow language, like CAL [UC Berkeley, 2003].

Expressing parallelism

It describes algorithms through a set of modular
components (actors), communicating through I/O ports:

Actions

Actor

Actions read input tokens, modify the internal state, and
produce output tokens.

Internal state

Application model

An application can be modeled as a task graph
with precedence relations:

τ1

τ2
τ5

τ3

τ

Task τi
A sequential
portion of code
that cannot be
further parallelized τ4

p

A task graph specifies the maximum level of parallelism

6/13/2013

9

Arrival pattern
Periodic (activations exactly separates by a period T)

Assumptions and parameters

(y p y p)

Sporadic (Minimum Interarrival Time T)

Aperiodic (no interarrival bound exists)

Is preemption allowed at arbitrary times?

Is task migration allowed?Is task migration allowed?

Application parameters:

{C1, C2, C3, C4, C5}, D, T

τ1

τ2
τ5

τ3

τ4

τ1

τ3

τ5

CiΣCs =Sequential
Computation time

P ll l

critical path

Important factors

τ2

τ4

5 Parallel
Computation time Cp = length of a

critical path

τ1

τ2

τ3

τ

(Cp > D) ⇒ A is not feasible in any number of cores

(Cs ≤ D) ⇒ A is feasible on a single core

τ4

τ5

Cp D

6/13/2013

10

τ1

τ3

τ5

CiΣCs =Sequential
Computation time

P ll l

Important factors

τ2

τ4

5 Parallel
Computation time Cp = length of a

critical path

required bandwidth
T
Cs

U =

Number of
required cores

2UU ≤ ≤

Outline

• How to express parallelism

• How to achieve temporal isolation

• How to analyze real-time applications

• How to simplify portability

• How to optimize resource usage

6/13/2013

11

Achieving Temporal Isolation

Temporal Isolation
Property of a multi-application system in whichProperty of a multi application system in which
the performance of an application does not depend
on the execution of the others.

The performance of an application only depends on:
Its own computational demand;

Resource Reservation

The amount of allocated resources.

An isolated application executes as it were
executing alone on a slower dedicated processor of

Achieving Temporal Isolation

g p
speed s equal to the reserved fraction.

Advantages
• Predictability: A misbehavior of an application does not

affect the others.

• Modular analysis: RT constraints can be verified
independently of the knowledge of other applications.

6/13/2013

12

τ1
τ

τ1 τ2 τ3Prioritized
P1 READY QUEUE

Priorities vs. Reservations

τ1

τ2
τ3

τ1
α1

Prioritized
Access

Resource

P2

P3

50%

τ2
τ3

τ2
τ3

α2

α3

Resource
Reservation 30%

20%

τ1Prioritized

Priorities vs. Reservations

τ1

τ2
τ3

Prioritized
Access

Resource
50%

τ2
τ3

Resource
Reservation 30%

20%

6/13/2013

13

Tasks as vehicles

Priorities vs. Reservations

L i it

Medium priority

High priority

25

Shared resource

Low priority

The priority approach

Problems in overload conditionsPriority:

Priorities vs. Reservations

26

6/13/2013

14

The RR approach

Less interferenceReservation:

Priorities vs. Reservations

car
lane

service
lane

27

truck
lane

RR: potential problems

but a resource is wasted if not usedReservation:

Priorities vs. Reservations

car
lane

service
lane

28

truck
lane

6/13/2013

15

Resource partition Resource enforcement

Resource Reservation

10 %

45 % 25 %

20 %
τ1

τ2
τ3

τ4

• Prevents tasks to consume

Each task receives a fraction αi

of the resource (bandwidth)

• Prevents tasks to consume
more than what reserved.

• If a task executes more, it is
delayed, preserving the
resource for the other tasks.

Implementing Resource Reservation

Reservation
server

τ1
α1

CPU

τ4

α2

α3

τ2

τ3

Reservation
Scheduler

Reservation
server

Reservation
server

RM
EDF
Static partitionsp

Polling
Deferrable Server
CBS

6/13/2013

16

Reservation server

A way to implement a reservation is through a
periodic server providing a budget Q every period P:

P
Q

α = Q/P = 4/10Reserved bandwidth:

P

α = Q/P = 2/5Reserved bandwidth:

Q

Which one is better?

Observe the worst-case service delay Δ :

Δ 2(P Q) 12

Reservation server

Δ = 2(P – Q) = 12

Δ = 2(P – Q) = 6

α = Q/P = 4/10Reserved bandwidth:

α = Q/P = 2/5Reserved bandwidth:

6/13/2013

17

Hence, two key parameters to describe a reservation
are: αBandwidth:

Reservation server

α

Δ

Bandwidth:

Worst-case delay:

QoS1α1 Δ1

QoS2

QoS3

α2 Δ2

α3 Δ3

Hiearchical Reservations

If applications are independently developed then each
reservation must provide a local scheduler:

Reservation

App. scheduler

Reservation

App. scheduler

Reservation

App. scheduler

τ1 τ2 τ3 τ4 τ5 τ6 τ7 τ8

Multi-core platform

Reservation Scheduler

6/13/2013

18

Outline

• How to express parallelism

• How to achieve temporal isolation

• How to analyze real-time applications

• How to simplify portability

• How to optimize resource usage

Schedulability Analysis

• Application demand is described through the
demand bound function:

dbf(t)

∑
=

−+
=

n

i
i

i

ii C
T

DTttdbf
1

)(

t

6/13/2013

19

Schedulability Analysis

• On a single processor, feasibility is guaranteed
under EDF if and only if:under EDF if and only if:

dbf(t)

ttdbft ≤>∀)(0

t

dbf(t)

t

Analysis under reservations

Given a reservation Rk, the supply function Zk(t)
gives the minimum amount of service time available
i i t l f l th tin any interval of length t:

Zk(t)

2

4
6

8

t

Zk(t)

t

2

Reservation
server

6/13/2013

20

Analysis under reservations

)()(0 tZtdbft k≤>∀

2

4
6

8

t

Zk(t)
dbf(t)

t

2

Reservation
server

Analysis under reservations

Linear bound: the Supply function can be lower bounded by:

S (t) = max{0 α (t Δ)} αk bandwidth

Zk(t)

2

4
6

8

Sk (t) = max{0, αk (t – Δk)}

αkΔk

αk bandwidth

Δk service delay

Zk(t)

t

2

Reservation
server

6/13/2013

21

Schedulability Analysis

• On a reservation Rk, feasibility is guaranteed
under EDF if:

)()(0 tStdbft k≤>∀

dbf(t)αk

Sk(t)

∑
=

−+
=

n

i
i

i

ii C
T

DTttdbf
1

)(

tΔk

Outline

• How to express parallelism

• How to achieve temporal isolation

• How to analyze real-time applications

• How to simplify portability

• How to optimize resource usage

6/13/2013

22

Applications
A

B

Abstracting the platform

0.50.2 0.3 0.40.2 0.4

Reservation Manager

Partitioning

Virtual platform

Core 1 Core 2 Core 3 Core 4

Reservation Manager
Physical
platform

Multicore Reservations

• How to extend reservations on multicore
platforms?platforms?

• Does it make sense to define reservations with
bandwitdh α > 1?

6/13/2013

23

Partitioning is not trivial

1

5

6 1

ΣCi = 19Cs =

19Cs

6

T = 10

0 5

= 10 = 1.9 < 2T
C

U =

1

5

6

6

1

0.6 0.6

0.5

1 1

0.6 0.6 0.5

0.8 0.6 0.5

Multicore Reservations

Hence, a multicore reservation cannot be
specified by the overall supplied bandwidth.p y pp

A multicore reservation must be specified
as a set of uniprocessor reservations

6/13/2013

24

Abstracting the platform

Appls

Virtual
l tf

Physical
platform

platform

Abstracting the platform

Appls

Virtual
l tf

Physical
platform

platform

6/13/2013

25

Abstracting the platform

Appls

Virtual
l tf

Physical
platform

platform

Abstracting the platform

Appls

Virtual
l tf

Physical
platform

platform

6/13/2013

26

Partitioning

To partition an application into a set of reservations,
we identify a set of flows.

Each flow is a sequential execution to be allocated
on a virtual uniprocessor (i.e., a reservation)

For instance: τ1

τ3

ττ1

τ2

τ4

τ5

Selecting the best flows

Different partitions have different bandwidth
consumption

Which one gives the best results?

6/13/2013

27

Outline

• How to express parallelism

• How to achieve temporal isolation

• How to perform real-time guarantees

• How to achieve portability by a proper abstraction
(the virtual multiprocessor)

• How to optimize resource usage

Dealing with precedence constraints

To compute the bandwidth required by a flow, we have
to assign intermediate activation times and deadlines:

d4 = D

d2

d1

deadlines

a1,

a2,

a4,

d5 = Dd3a3, a5,

activation
times

6/13/2013

28

Once activation times and deadlines are assigned to
each task, we can execute them according to EDF,
f tti th d l ti

Dealing with precedence constraints

forgetting the precedence relations:

d1a1,

d3a3,

d2a2,

d5a5,

d4a4,

Then, the processor demand required by a flow Fi
is computed in each interval of time:

Computational demand of a flow

Fiτ1 τ2 τ3

hi(t)

C1 C2 C3

C

t
d1 d2 d3

C1

C2

C3

6/13/2013

29

To guarantee flow Fi on VPk it must be

Several solutions are possible:

Real-time guarantee

∀t hi(t) ≤ Sk(t)

Several solutions are possible:

hi(t)
αkSk(t)

Δk
The higher the delay, the higher the bandwidth required.

t

α = Q/P Overhead: σ / P

A t l B d idth B /PΔ = 2(P Q)

Resource Optimization

Actual Bandwidth: B = α + σ/PΔ = 2(P – Q)

B = α + 2σ 1 – α
Δ

Taking overhead into account, it is possible to
compute the (α,Δ) that minimizes B.

6/13/2013

30

Optimal bandwidth

Once the best (α,Δ) have been computed for each flow,
the total bandwidth required by the application is:

h2(t)h1(t) α1

Δ1

α2

Δ2

B1 B2

B = BkΣ
k=1

m

Selecting the best partition

Different partitions require different bandwidth:

How to find the partition that minimizes B?

6/13/2013

31

Search algorithm

1

1 2 1 21 2 1 2

1 2 3 1 2 3 1 3 2 1 2 3 1 2 3

Pruning is used to cut

unfeasible branches (B > 1) Csunfeasible branches (Bk > 1)

redundant branches (m > M) T
C

δM =

Exponential complexity (tractable for n < 20)

Heuristics needed

Although the pruning, the branch and bound
algorithm has exponential complexity and the method
is not usable with more than 15 tasks.

For this reason,

heuristic algorithms are needed to partition the
applications into flows.

simple tools are crucial to make such methods
applicable in practice.

6/13/2013

32

The Partitioning Tool

Partitioning
Tool

F1

F2

F

•
•
•

C1, … Cn, D, T
ctx-sw. overhead σ

B1, …, Bm

B = BkΣSuch that is minimum

Fm

6/13/2013

33

6/13/2013

34

Open Problems

Communication delays

Shared Resources

Adaptivity

Accounting for communication delays

Delays depend on the allocation on the physical cores.

They affect task activation timesThey affect task activation times

d1a1,

1 2 3 4

6 75

F1

F2

d6a6,

a6 = max(a5, d1)

6/13/2013

35

Accounting for communication delays

Delays depend on the allocation on the physical cores.

They affect task activation timesThey affect task activation times

d1a1,

F1

F2

1 2 3 4

6 75

d6a6,

a6 = max(a5, d1+Δ) Δ is larger if F1 and F2
are allocated on ≠ cores

Problems with shared resources

If a server exhausts its budget while locking a shared
resource, extra blocking can be introduced in other servers
needing the same resource:needing the same resource:

Server 1

Lock (R1) Unlock (R1)

Budget
exhausted

Budget
replenished

Server 2

Lock (R1)

Extra blocking

direct
blocking

Unlock (R1)

6/13/2013

36

Possible solution

Budget overrun (with payback) [Davis & Burns, 2006]
Effective, but it breaks isolation and requires using extra
b d idth

Server 1

Lock (R1) Unlock (R1)

Budget overrun}

} Payback

bandwidth.

Server 2

A better solution

Budget check and wait [Behnam et al. 2007]
Before locking a resource, the budget is checked: if it is not
sufficient the server waits for replenishment ⇒ SIRAP

Server 1

Lock (R1)

sufficient, the server waits for replenishment ⇒ SIRAP

Unlock (R1)check

Server 2

6/13/2013

37

A better solution

Budget check and recharge [Bertogna et al., 2009]
Before locking a resource, the budget is checked: if it is not
sufficient the server recharges ASAP ⇒ BROE

Server 1

Lock (R1)

sufficient, the server recharges ASAP ⇒ BROE

Unlock (R1)check

Server 2

Dynamic applications

• Some applications have highly variable behavior difficult
to predict (e.g. multimedia players, visual tracking)

resource
needs

any reservation is not appropriate

safe but
not efficient

time

efficient but
not enough

6/13/2013

38

Need for adaptivity (modes)

• Reservations should be adapted to the application
needs based on runtime requirements:

resource
needs

Off line guarantee
Feasible modes
Feasible transitions

time

Adaptive QoS Management

• A Reservation Manager must decide how and when
changing a reservation to satisfy the application needs, as
well as to preserve the other reservations

QoS1α1 Δ1

well as to preserve the other reservations.

τ1

Reservation Manager

QoS2

QoS3

α2 Δ2

α3 Δ3

τ2

τ3

6/13/2013

39

Thank you

